
Getting Licensing Right at ownCloud

Case-2016-01-Getting-Licensing-Right

On the morning of October 6, 2014, Holger Dyroff, a co-founder of ownCloud Inc., was on
his way to an important meeting. While waiting at a red traffic light, he was outlining for him-
self the strategy he would be presenting to the other two co-founders of ownCloud. The meet-
ing was with Mr. Frank Karlitschek, who had initiated the ownCloud project and was in
charge of development, and Mr. Markus Rex, ownCloud’s chief executive officer (CEO).

ownCloud Inc. is a software vendor providing a file sync and share software to enterprise cus-
tomers and the open source world. The goal of the meeting was to come to a decision about
the license of the iOS client, an app that allows users to access their files from mobile Apple
devices. Dyroff’s responsibilities at ownCloud included the management and governance of
intellectual property and licensing. All three co-founders knew that managing intellectual
property correctly was critical for the success of ownCloud.

Up until this point, the iOS mobile client had been provided exclusively under a proprietary
license, even though the ownCloud software itself was based on open source software. In or-
der to be able to distribute the iOS client via Apple’s App Store it was necessary to make the
app available under a proprietary license, because Apple did not accept Free/Libre and Open
Source Software-licensed programs.

Unfortunately, the iOS mobile client not being open source software meant two things. Firstly,
the ownCloud executives learned that the iOS client improved significantly slower than own-
Cloud’s Android client. The Android client was open source software and the community was
therefore able to work with it. Secondly, critical comments being made inside the community
about the fact that the crowd was deprived of the code of the iOS client were becoming louder
and were gaining resonance.

Waiting at the traffic light, Dyroff was weighing in his mind different courses of action and
what the associated risks and opportunities would be. Should he advocate open sourcing the
iOS client? This would address the problems mentioned above, but wouldn’t ownCloud Inc.
be losing revenue then?

Case-2016-01-Getting-Licensing-Right - http://pmbycase.com - 2018-08-07. 1Licensed under CC BY SA 4.0, see last page for authors and credits.

http://pmbycase.com/

1. Introduction to ownCloud

1.1 Project and company

ownCloud, Inc., the company, built its products on ownCloud, a Free/Libre, and Open Source
Software (FLOSS) project, right from the beginning.1 When the company was founded in De-
cember 2011 it was already able to draw on the work of the ownCloud FLOSS community.
By the time the company was started, version 2.0 of ownCloud had been launched.2 Up until
this point, development of the software project had been driven solely by the associated open
source community under the management of Frank Karlitschek. It was in January 2010 that
Karlitschek had kicked off the ownCloud project at the K Desktop Environment (KDE) con-
ference. Karlitschek had been a FLOSS enthusiast for over 10 years by this time, and had also
played several management roles in the KDE community.

Like most successful FLOSS projects, ownCloud came about due to a need for which no other
solution so far existed. Mr. Karlitschek was searching for a way to sync(hronize) photos and
other files to all of his devices and to share them with his friends and family. Also, he wanted
to ensure that large files like videos — which often were too big to be sent via e-mail due to
attachment size restrictions — could be sharable without the need to fall back on a physical
drive.

At that time, various file synchronization and sharing (FSS) solutions already existed. One
prominent example was Dropbox, a company launched in 2007 that had quickly evolved to
become an FSS solutions leader, setting a benchmark for all other services that provided simi-
lar functionality. Dropbox made it easy for users to store and share data. It also allowed users
to sync data between all their devices, enabling them to keep their content and folders syn-
chronized everywhere. Also, Dropbox came with several other practical features such as auto-
matic syncing of pictures that users took with their mobile phones.

For Karlitschek, though, use of such services was out of the question. He wished to conve-
niently transfer his data, but not at the cost of entrusting his data to a third party service that
did not guarantee him certain freedoms (Karlitschek, 2014).

The mainstream FSS solutions, including Dropbox, were mostly offered as Software as a Ser-
vice (SaaS) and via the public cloud distribution model. In this cloud computing setup, the

1 The term Free/Libre and Open Source Software (FLOSS) was coined with the intention of providing equiva-
lent weighting to both the concepts of free software and open source software. Within the FLOSS commu-
nity, there is an on-going debate as to which of the two latter should be used to describe software in which
the source code is made available and users are assigned the rights to change the software and to redistribute
it (Williams, 2002). The term ‘Libre’ was added to ensure the acronym FLOSS stressed the free nature of the
software. ‘Libre’ also underlines the fact that the free in ‘free software’ is to be understood with regard to the
freedom with which it can be used rather than because it comes gratis, rather as in the case of free beer
(Stallman, n.d.). FLOSS, open source software and free software are terms used to refer to the same concept
in the majority of cases. Here the terms are all used interchangeably.

2 Please note that the term ‘ownCloud’ is used in this text to designate several things. Firstly, it is used to refer
to the software ownCloud, which was available in version 8.2 at the beginning of 2016. Secondly, ownCloud
is the name of the community project associated with the software. Thirdly, there are also an ownCloud Inc.
and an ownCloud GmbH. The GmbH is based in Nuremberg and is a subsidiary of ownCloud Inc. that is
headquartered in Lexington, Massachusetts.

Case-2016-01-Getting-Licensing-Right - http://pmbycase.com - 2018-08-07. 2Licensed under CC BY SA 4.0, see last page for authors and credits.

http://pmbycase.com/

software is hosted in data centers controlled by cloud providers, who offer it to multiple cus-
tomers at the same time (NIST, 2011). Users can access software and storage on demand, for
example via a web browser, just like opening a web page. They do not need to install software
on their own machine or to provide the necessary computing power by themselves. For exam-
ple, Google Docs users no longer have to install an Office suite on their computers and when
they use Google Docs all data is saved on servers maintained by Google. Customers are there-
fore not aware of where exactly their data is stored or processed. For them, the data is simply
somewhere out there in the cloud. As services are provided via a public network, public cloud
architectures are often associated with security concerns.

These security and non-transparency concerns are an important issue for companies that want
to provide an enterprise file synchronization and sharing solution (EFSS) for their employees.
This can become especially critical in combination with concerns about data privacy, which is
a particularly sensitive issue in Europe where companies need to take special care that pro-
cessing of personal data meets the provisions of the European Data Protection Directive. Due
to regulations such as these, it can be crucial for companies to be able to identify where or at
least under which legislative framework their data is being processed and stored.

Karlitschek’s aim was to provide an intuitive and consumer-friendly FLOSS alternative to
Dropbox and other mainstream file sync and share providers — an alternative especially inter-
esting for all those who want to maximize control over their data and have full knowledge of
where, in which jurisdiction, and for how long their data is stored.

Thanks to open source, the ownCloud project quickly became a success story. In 2011, just
one year after its launch, ownCloud estimated that it had around 350,000 users worldwide
(Endsley, 2011). By September 2015, ownCloud Server had already reached the 2.5 million
user mark (ownCloud, 2015).

ownCloud Inc. was founded to supplement the ownCloud project in December 2011 by Frank
Karlitschek, Holger Dyroff, and Markus Rex. The three German co-founders incorporated in
the United States, because of its superior ecosystem for software startups at the time.

ownCloud Inc. is headquartered in Lexington, Massachusetts, close to Boston. The founders
found it easier to raise funds from venture capitalists in Boston than in Nuremberg.

Dyroff had extensive experience with FLOSS with regard to business development and be-
came vice president strategic partners at ownCloud Inc. He was also appointed executive di-
rector of ownCloud GmbH, the German subsidiary of ownCloud Inc. Markus Rex, with his
long background in technology management at FLOSS organizations became chief executive
officer (CEO) of ownCloud Inc. Frank Karlitschek remained community leader of the own-
Cloud community project. In 2012, he additionally stepped into the role of chief technology
officer (CTO) to also drive forward product development for the enterprise.

ownCloud Inc. was able to continuously extend its customer base. By the end of 2015, it had
more than 300 enterprises subscribing as customers. This was equivalent to more than
900,000 commercial users. They hauled from across 47 different countries.

These impressive figures also resulted in financial success. In January 2016, CEO Markus
Rex was able to jubilantly announce that ownCloud Inc. had managed to grow over 100 per
cent during the course of 2015, thus giving ownCloud its most successful financial year ever.
Also, he gave ownCloud good chances of doubling its revenue again in 2016. ownCloud was
thus aiming to realize annual revenue of US$16 million in 2016 (Rex, 2016).

Case-2016-01-Getting-Licensing-Right - http://pmbycase.com - 2018-08-07. 3Licensed under CC BY SA 4.0, see last page for authors and credits.

http://pmbycase.com/

ownCloud had successfully entered a rapidly growing market. The overall worldwide FSS
market was forecast, by research and intelligence firm International Data Corporation (IDC),
to grow from US$805 million at the beginning of 2014 to a value of US$2.3 billion in 2018
(IDC, 2014).

1.2 Business model

ownCloud Inc. is a single vendor commercial open source software company providing an
EFSS software in return for payment through a subscription model.3 Additionally, it offers ser-
vices and support to ownCloud users.4 ownCloud Inc. does not itself host its EFSS solution,
so it does not act as a cloud provider.

Exhibit 1 provides a comprehensive overview of ownCloud’s business model based on the
Business Model Canvas Template of Alexander Osterwalder.

The ownCloud software suite is offered in two different editions. The ownCloud Server Edi-
tion comprises only the gratis FLOSS offering whereas the ownCloud Enterprise Edition,
which is aimed at large enterprises, comprises extra features. The Enterprise Edition is specif-
ically designed to attract as customers larger organizations in need of a secure EFSS solution
that does not come at the cost of their losing control over their data. In order to meet customer
demands, ownCloud Inc. has supplemented the software of the community project by adding
features that are mainly of interest to larger enterprises.

ownCloud Server is a software suite of client server software that enables users to establish
their own file synchronization and sharing service by hosting it on their own hardware. It can
be the ideal solution for individuals, a group of users, or for small to medium-sized busi-
nesses. The ownCloud Server is developed and maintained via the ownCloud community un-
der the leadership of Frank Karlitschek.

The latest release of the FLOSS server software package can be downloaded for free from the
ownCloud project website. It can be used to set up an on-premise cloud solution. A network-
attached computer, server, or network-attached storage system (NAS) are all that is required
for users to install and run their own FSS cloud concept. Organizations can run an ownCloud
server in their own network.

A crucial part of ownCloud’s own aspiration and value proposition is providing for a high de-
gree of privacy and control regarding user data, whilst establishing universal file access and
the breaking down of data silos. ownCloud manages this by providing FLOSS software for
download, so that users can install it in their own infrastructure. On-premise software is a term
used to describe software which is hosted on the users’ own hardware and where it is thus in
their sphere of control. Thanks to its on-premise setup, users of ownCloud know where their
data is stored. In addition, they have more control over what is happening with their data –
certainly more control than if they were to use a FSS solution offered by an external cloud
provider in the form of SaaS. Furthermore, it is possible to use the ownCloud external storage
option. Thanks to this functionality other cloud services can also be integrated, such as Drop-
box. ownCloud’s federated cloud feature enables the combined usage and management of

3 The company’s strategic setup matches the single vendor commercial open source business model as out-
lined in a paper by Riehle (2012).

4 Service and support activities tend to be typical of the standard business model employed by open source
firms (Fitzgerald, 2006). Additionally, when a company does not fully own the rights to a FLOSS project, it
is still possible to create a revenue stream around community open source by offering services and support.

Case-2016-01-Getting-Licensing-Right - http://pmbycase.com - 2018-08-07. 4Licensed under CC BY SA 4.0, see last page for authors and credits.

http://pmbycase.com/

multiple internal and external cloud computing services. Because of this, data stored in differ-
ent places can be universally accessed via ownCloud’s FSS solution without transferring data
control to an external service.

The software suite also comprises synchronization clients that allow ownCloud to be accessed
from different devices. The desktop client seamlessly integrates with a user’s personal com-
puter (PC) and is easy to handle. Mobile clients available for various mobile operating sys-
tems are downloadable from the different vendors’ app stores. These facilitate file access via
mobile phones or tablets and allow data to be continuously synchronized on all user devices.
By virtue of its cleanly designed look, ownCloud creates a Dropbox-like user experience.

Due to its modular architecture, the ownCloud Server is extensible via apps that can be down-
loaded from the ownCloud App Store for free. Developed by members of the community, all
apps add extra features to ownCloud. Hundreds of available apps provide for functionality
that, in part, goes far beyond FSS alone. For example the app Documents makes possible col-
laborative editing and creation of text files.

The Enterprise Edition is basically the same software suite as ownCloud Server. As the Enter-
prise Edition targets organizations with a minimum of 50 users and a sweet spot at 500 users,
it has to satisfy special customer expectations. One of its most important features is that it pro-
vides for easy integration with the extended system landscape that can be expected in large or-
ganizations. For example, the Enterprise Edition offers Microsoft SharePoint and access to
Windows Network drives. Additionally, larger companies need to put special emphasis on
data management, and a suitable EFSS solution must also be consistent with specific corpo-
rate policies. So a high level of control over company data must be ensured. For example, the
ownCloud File Firewall allows for fine-grained access control. Therefore the Server Edition is
supplemented by special Enterprise Applications developed at ownCloud Inc.

It is not only this extended set of features that customers can unlock when they take out a sub-
scription. For example, they are also provided with all the clients they need for their employ-
ees and can create their own branded versions of them. Customers can replace the ownCloud
logo with their own. One of the customers of ownCloud is, for example, the German railway
company Deutsche Bahn (DB). DB has subscribed to the Enterprise Edition and has installed
ownCloud on their network in order to offer an on-premise hosted EFSS solution for their em-
ployees called DBBox. The branding of the app with the DB logo means that DB employees
do not have the feeling that they are using an external service but a tool exclusive to DB. The
ability to brand the clients is especially important for one group of potential customers of
ownCloud; these are Original Equipment Manufacturers (OEMs). OEMs are companies that
redistribute another company’s product under their own brand. Blaucloud, for example, is a
German cloud provider that hosts ownCloud on its servers in order to offer FSS solutions as
SaaS to their own customers. For OEMs like Blaucloud, it can be important to have their own
logos on their software so that their customers are able to recognize their products. Providing
this option exclusively with the Enterprise Edition helps to make it more interesting for cus-
tomers than the gratis Server Edition.

ownCloud Inc. generates income by offering its customers subscriptions. The subscriptions
are user-based and involve payment of a subscription fee. Whereas the Enterprise Edition is
available by subscription only, ownCloud Server is in general free to use. If however, smaller
organizations need more support than they can obtain gratis via the community online forum,
they also have the option of selecting the Standard Subscription through which they can ob-
tain services and support in connection with the ownCloud Server.

Case-2016-01-Getting-Licensing-Right - http://pmbycase.com - 2018-08-07. 5Licensed under CC BY SA 4.0, see last page for authors and credits.

http://pmbycase.com/

Exhibit 2 shows a comparison of the two different Editions of ownCloud and highlights im-
portant attributes.

As a company based on an open source community project, the business model of ownCloud
Inc. had, for one thing, to take account of this circumstance while also exploiting this unique
characteristic in order to be successful. Firstly, this had implications for the open source de-
velopment model and the special relationship with the ownCloud community. Almost two
years prior to the foundation of the company, the community had laid the cornerstone by start-
ing to implement the ownCloud project. And development continued to be undertaken by the
community after the foundation of ownCloud Inc. Secondly, licensing was a special concern
that had to be considered when engineering ownCloud’s business model.

1.3 Why open source?

Back in 2011, it was not only due to Karlitschek’s FLOSS background that ownCloud became
an open source project. For him, it was the obvious choice if he wanted to create a FSS solu-
tion that could be trusted.

All FLOSS source code can be reviewed or modified by anyone. The software can be freely
redistributed. Everyone who has a copy of a FLOSS program can share it with others, with or
without modifications. In order to be considered as FLOSS, the source code of the corre-
sponding computer programs must be made available. These features set FLOSS apart from
so-called proprietary software, also known as closed source software. Here source code is not
made available, and modification or distribution of copies is mostly prohibited in order to
maximize potential monetary exploitation. Sharing of proprietary software is mostly seen as
an act of software piracy involving copyright infringement unless explicitly permitted by the
rights holders.5

Open source is also the term applied to the special development model that underlies the cre-
ation of FLOSS. The specific FLOSS attribute — that any interested person can alter the
source code when desired – allows for a special form of collaborative and decentralized de-
velopment. Often users contributing to the development self-organize in the form of a com-
munity around the project.

Karlitschek knew from his previous FLOSS experience that an open source approach would
be more beneficial for realizing ownCloud than the creation of proprietary software.

The first category of benefits Karlitschek intended to exploit for his project are rooted in the
special process of open source software development. As the source code is made available,
anyone interested enough and with a certain basic set of skills is able to contribute. Also, open
source development is a highly cooperative process. Due to the number of helping hands, the
productive discussion with like-minded skilled people and the prospect of including different
areas of expertise, development will be achieved more rapidly than if a small group of em-
ployees only are used.

The open source approach not only speeds up the development process, it can also result in a
higher quality and error-robust product, making the software especially secure. This can be
explained with the help of what is known as Linus’s Law.6 The greater the number of people

5 There are certain forms of proprietary software that also allow for free redistribution of copies. For example,
shareware is proprietary software which can be redistributed, but free usage may only be granted for a trial
period and users are not free to inspect or modify the source code (Lerner, Tirole, 2003).

Case-2016-01-Getting-Licensing-Right - http://pmbycase.com - 2018-08-07. 6Licensed under CC BY SA 4.0, see last page for authors and credits.

http://pmbycase.com/

dealing with the source code of a program, the more bugs are likely to be detected and re-
solved and thus the likelihood for security breaches is reduced (Raymond, 2001).

Secondly, the freedom of redistribution and modification makes it easy to incorporate other
FLOSS programs into the architecture, assuming that the associated licenses are compatible.
By simply reusing codes from other FLOSS projects, certain features can be implemented
without having to reinvent the wheel. This characteristic of FLOSS can save valuable devel-
opment time and speed up projects significantly. For example, one of many programs own-
Cloud was able to use as a module was the open source web server framework SabreDAV. By
incorporating SabreDAV, ownCloud could readily establish communication with the help of
the WebDAV protocol. WebDAV is an open protocol through which ownCloud enables file
access and synchronization. With FLOSS it is easier to implement the use of open standards
and protocols – something that is important for ownCloud to ensure that it is as compatible
with as many different file transfer platforms as possible.

Thirdly, the previously specified benefits of open source development accumulate to produce
a major additional advantage. The FLOSS character of ownCloud is key to satisfying the high
demands that Karlitschek imposed on the project with regard to privacy and user data control.
Basically, being open source adds transparency to the equation, as users have the opportunity
to look inside the source code and to understand what the software really is doing. It can thus
be excluded that programs have unidentified back doors that give others access, unauthorized
by the user, to the uploaded data (Stallman, 2009).

Also, vendor lock-in cannot occur in connection with FLOSS, as any missing export feature
could be added to enable the transfer of user data to another service.

But the open source concept not only helped Karlitschek and the community to develop own-
Cloud. It was and is also a strategic asset for ownCloud Inc. A FLOSS version promotes use
of a product much more efficiently and cost-effectively than marketing by the company could
ever do (Olsen, 2005). Also, ownCloud’s FLOSS background successfully helps to distinguish
ownCloud Inc. from the roughly 300 competitors in the marketplace. In 2014, the company
was classified by market research institute Gartner as a niche player for not coming close to
the market share of mainstream EFSS solutions (Arlotta, 2014). Yet, when compared to other
FLOSS solutions, ownCloud was the leading open source FSS alternative to the mainstream
services, to which all users who have concerns about their data privacy can switch.

6 Eric S. Raymond, a developer who looked at the reasons why open source development is especially effi-
cient, named this effect ‘Linus’s Law’ in honor of Linus Torvalds, who is the creator and long term principal
developer of the Linux kernel.

Case-2016-01-Getting-Licensing-Right - http://pmbycase.com - 2018-08-07. 7Licensed under CC BY SA 4.0, see last page for authors and credits.

http://pmbycase.com/

2. Software Licensing

2.1 Intellectual property

Software businesses build on intellectual property. Intellectual property is an intangible asset,
such as a man-made invention, for which exclusive ownership can be claimed. Authors, artists
and inventors are granted exclusive rights in the form of intellectual property rights (IPR) by
the legal system, enabling them to use and benefit from their creations. The public does not
have the same set of rights as the creator of a particular piece of intellectual property. For ex-
ample, persons other than the creator of a drawing are not allowed to sell copies of the draw-
ing. If others wish to use something that is considered the intellectual property of someone
else, they will need to request the right to use the item from the IPR holder. IPR holders can
grant others certain exclusive rights. They can provide permission in the form of a license.
Usually, such permission involves payments by the licensee in form of license fees, also
known as royalties.

The three main forms of property covered by IPR are trademarks, patents, and copyrights.

Trademark rights protect identifiers (the trademark) that can be used to distinguish products
or businesses, such as names, logos, slogans or even tunes that have been created to be associ-
ated with a certain company. ownCloud is a trademark registered to ownCloud Inc. Because
of this, ownCloud has secured the right to prohibit unwanted usage of its product’s name and
symbol, and to prevent users from being misled by software unlawfully branded as ownCloud.

Figure 1: The ownCloud trademark as registered with the
United States Patent and Trademark Office ("ownCloud Logo", n.d.)

Patent rights are IPRs used to prevent unauthorized use of the fundamental aspects of (usually
technical) inventions. Patents need to be granted by official patent offices and are granted for
a limited period of time only. They represent the most extensive form of IPR protection as
they can even serve to prohibit the use of products developed completely separately yet which
employ the same idea as that of an invention already patented. This allows patent holders to
use monopolistic pricing policies and to earn money by licensing the right of using the
patented component to others.

A company wishing to use patented software first has to obtain the licenses provided by the
patent holder. In general, software is also protectable via patents, even though patents are only

Case-2016-01-Getting-Licensing-Right - http://pmbycase.com - 2018-08-07. 8Licensed under CC BY SA 4.0, see last page for authors and credits.

http://pmbycase.com/

indirectly applicable to software in the European Union. In the United States, software patents
are granted, if they are filed to protect the technical concept of an invention. There is a grow-
ing trend towards obtaining software patents, even though there is an extensive global debate
on whether, and to what extent, software patents are beneficial. For example, patents can lead
to compatibility issues and also overlap with the copyright protection of software. Software
patents also add a further level to the complexity of licensing on the basis of copyrights, as
such licensing always has to be reviewed with regard to possible violation of software patents
(Evans, Layne-Farrar, 2004).

Copyright protects artistic works, such as paintings, songs and books. Copyright applies by
default as soon as a creator brings to life a form of individual creative expression in a tangible
medium. Basically, owners of a copyright have the exclusive right to distribute their creation,
be it by copying it or by giving away slightly modified versions. This is mainly designed to
ensure that copyright holders are able to make money from their creations before someone
else markets a copy of it. For an artistic work to be protected by copyright law, an author, for
example, does not have to request copyright protection. Protection is granted automatically,
but only for a certain period of time. Unlike patents, copyright does not protect a complete
work. It only covers specific instances produced by creators. If a songwriter composes a song
about the sun, only this piece of music is protected by copyright, not the general concept of
the sun itself.

Within the context of IPR, computer software is classified as a piece of literature. Software is
automatically protected by copyright law as long as the underlying source code is an original
work created by the developer. All source code has an initial copyright holder, the owner. The
owner maybe the creator, or it may be the legal entity employing the creator, etc. All those in-
terested in distributing copies of the software based on this source code have to request per-
mission from the copyright holder. It is common for developers to transfer the copyright of
their work to the company that employs them or to the organization governing the FLOSS
project on which the developer is working. Thus, the organizations also have the right to re-
distribute or license the developer’s work. A commercial license to redistribute software again
is usually associated with income in the form of royalties. Anyone distributing unauthorized
copies of a software program would risk prosecution due to copyright infringement, and could
face severe penalties. Copyright holders can set the rules with which others have to comply if
they wish to use the software.

All three forms of IPR outlined above allow creators and businesses to protect their market
and to generate revenue by issuing licenses for the use and rights of distribution of their prod-
ucts. But those wishing to set the conditions others have to meet must first obtain ownership
of the associated intellectual property.

2.2 Free/libre, and open source software licensing

In the context of FLOSS, all three IPRs are important. The FLOSS concept is based on certain
principles, such as the facts that everybody is free to study the source code and to modify and
distribute the software. At first glance the FLOSS principle seems to be incompatible with the
concept of copyright, as copyright law limits the right of redistribution exclusively to copy-
right holders.

But licensing can resolve this conflict, as licenses allow rights of the copyright holder to be
passed on to anyone who wants to redistribute them. The developer or the company that de-
veloped the software still retain ownership of the copyright. Yet anyone wishing to make use

Case-2016-01-Getting-Licensing-Right - http://pmbycase.com - 2018-08-07. 9Licensed under CC BY SA 4.0, see last page for authors and credits.

http://pmbycase.com/

of the afforded freedoms needs to exactly follow the licensing terms of the IPR holder. Thus,
the concept underlying FLOSS does not conflict with that of copyright — in fact it is even
based upon this.

A software license typically defines the rights and obligations put upon the licensee.

FLOSS licenses, for example, typically require that the copyright notice covering the original
work is always passed on when a FLOSS product is redistributed. This feature is important in
the case of FLOSS projects as developers are attracted to them because they can rely on being
able to build their reputation in this way. The intention of developers contributing to FLOSS
projects is that everybody should be able to copy their software in order to make it available
to everyone else. Also, all interested parties have the right to modify the software, so that any-
one can alter it to meet their own needs. In order to make software freely copyable, modifi-
able, and distributable, FLOSS developers have to explicitly grant these rights to others.
FLOSS licenses are the tool that generally makes this possible. Without these licenses, the
rights of making and distributing copies would remain exclusive and the idea of FLOSS
would thus not exist.

A special document, the Open Source Definition, details further characteristics that software
licenses have to meet so that the associated software can qualify as open source. The docu-
ment is maintained by the Open Source Initiative (OSI), an organization founded in 1988 by
open source advocates. The Open Source Definition explicitly specifies free redistribution as
a requirement, stating that FLOSS licenses must not restrict the passing on of software to oth-
ers. All FLOSS licenses therefore have to ensure that the licensee is allowed to redistribute the
software. Also, the free distribution principle means that the licensor does not have the right to
demand royalties or other payments in exchange for granting FLOSS licenses (“Open Source
Definition”, n.d.). This implies that no business model that would generate revenue in the
form of income from licenses granting rights of usage or distribution of single copies would
be applicable in the case of FLOSS, mainly because businesses would not be allowed to re-
strict redistribution and customers would be able to give away the software for free. After a
certain period, nobody would be willing to pay a business the fees it would be demanding.

That, again, represents a major difference to field of proprietary software, where a typical
business model is to generate income by selling the right of use of a single copy of the soft-
ware. Customers do not purchase the software per se but the license to use their copy together
with the medium the software is supplied on, as for example a CD-ROM. Usage licenses are
usually granted in the form of End User License Agreements (EULA), which typically ex-
clude the freedoms granted by FLOSS licenses. Proprietary licenses usually provide only n
permission for users to use the single copy of a software they have obtained while excluding
any further forms of usage. Proprietary licenses therefore aim to limit usage rights whereas
FLOSS licenses aim to entitle users to rights otherwise exclusive to the copyright holder.

There are two subclasses of FLOSS licenses. It is important to distinguish between permissive
and reciprocal licenses.

Permissive licenses impose some conditions on the distribution of the software to which they
are attached. Their primary purpose is to grant users the typical FLOSS freedoms so that they
can freely use the code, make modifications, and redistribute the code and programs created
from it. Typically, permissive licenses exclude, via warranty disclaimers, all liabilities for any
malfunction or damage caused by the software. Finally, they include an attribution clause that
requires that upon use, the copyright holders’ notice be included in the redistribution. These
clauses ensure that the sources of the FLOSS components can be identified and that the origi-

Case-2016-01-Getting-Licensing-Right - http://pmbycase.com - 2018-08-07. 10Licensed under CC BY SA 4.0, see last page for authors and credits.

http://pmbycase.com/

nal licensing conditions and disclaimers are always distributed together with any derivatives.
Due to the attribution clause, users wishing to redistribute software have to incorporate the
original copyright notice and the original licensing text.7

The MIT License, originally conceived at the Massachusetts Institute of Technology (MIT), is
the most popular FLOSS license (“Top 20 Open Source Licenses”, n.d.). Its is also one of the
earliest FLOSS licenses, originally designed to facilitate in a concise manner the sharing of
software for academic projects (Laurent, 2004).8

Similarly, another of the early forms of license also had its origins at a university; this is the
Berkley Software Distribution (BSD) license family.9 The 2-Clause BSD License is very simi-
lar to the MIT License. The 3-Clause BSD License has an additional requirement in that next
to the required attribution the names of the original copyright holders may not be used for
promotional purposes.10

The Apache License 2.0 is maintained by the Apache Software Foundation as a licensing tool
for Apache projects, including the Apache HTTP Server.11 It focuses on software development
by large communities. The Apache License 2.0 includes a special paragraph that also transfers
usage rights for software patents if the open source code distributed under an Apache License
2.0 also incorporates patented ideas. Even though it bears the Apache name, it is also used by
many FLOSS projects outside of the Apache world which want to open-source their own soft-
ware under the same terms.

Reciprocal licenses share the attributes of permissive licenses. They also aim to grant users
extensive copyright usage rights and on the other hand guarantee attribution of the source and
its copyright holder, as well as the original license. What is more, reciprocal licenses ensure
that FLOSS source codes remain open and free in the future. This effect is enabled by an addi-
tional attribute of reciprocal FLOSS licenses that has been designated copyleft.12

Copyleft adds more restrictive requirements to the rights to redistribute software. Basically, all
those wishing to pass on software that is attached to a reciprocal license have to use the same
license for redistribution. This also applies if developers modify the code in order to add any
features or to create interoperability with another program (Jaeger & Metzger, 2011). The out-
come of modifications is referred to as a derivative work, comprising a piece of the original
software and some kind of extension. Derivative works must be distributed under the same re-
ciprocal FLOSS license attached to the original element used.

7 In contrast to reciprocal licenses, in this case the licensing conditions of the original source code are stated
for information purposes only and do not restrict users when it comes to choosing a license for redistributing
copies of permissively licensed software.

8 The MIT License consists of three short paragraphs only: a copyright notice, a permission notice and a war-
ranty disclaimer. It can be viewed on the OSI website (https://opensource.org/licenses/MIT).

9 The template of the 3-clause BSD license can be found together with a comparison with the 2-clause text at
https://opensource.org/licenses/BSD-3-Clause.

10 Even though it is a very popular license, the third clause is known to be associated with incompatibilities
with other FLOSS licenses, such as the GPL family (Laurent, 2004).

11 The Apache License 2.0 is already a more extensive legal document and can be found on the website of the
Apache Software Foundation (http://www.apache.org/licenses/LICENSE-2.0).

12 Copyleft was conceived and named by Richard Stallman when he drafted the first version of the GPL. The
name indicates that no further restrictions may be applied to copies and modifications made from the origi-
nal than those imposed by the original license. It is, of course, also a wordplay on ‘copyright’ (FSF, n.d.).

Case-2016-01-Getting-Licensing-Right - http://pmbycase.com - 2018-08-07. 11Licensed under CC BY SA 4.0, see last page for authors and credits.

http://pmbycase.com/
http://www.apache.org/licenses/LICENSE-2.0
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/MIT

Furthermore, copyleft affects combined works. A typical way to combine code components is
via linking. Here, code components in the form of libraries or plug-ins are not incorporated
but combined via links to the single sources. When using a reciprocally licensed component to
create a combined work, there is a high likelihood that it has to be licensed under the same re-
ciprocal FLOSS license. Copyleft is sometimes considered to be viral, as reciprocal FLOSS li-
censes seem to spread quite aggressively, because they are applied to other code components.
However, collective works make it possible to combine reciprocally licensed components
with other licensed components and to issue the result under a freely selectable form of soft-
ware license. Collective works are created when different software elements are combined to
form a larger software package, as is the case with the various Linux products. The single pro-
grams incorporated in a collective work can communicate with each other but are not linked.
With this set up, it is for example possible to distribute a software suite that consists of propri-
etarily licensed as well as reciprocally licensed software components.

Exhibit 3 provides an overview of the effects of copyleft on software with reference to the
various possible modification and combination types.

The most popular reciprocal license family evolved around the General Public License (GPL),
which also was the first copyleft license.13 Richard Stallman had originally created the license
in order to use it for the software components of the GNU project.14 Version 2 of the GPL is
the second most popular FLOSS license after the MIT license (“Top 20 Open Source Li-
censes”, n.d.). ownCloud uses Version 2 as well as Version 3 of the GPL. Both versions have
in common the fact that no further restrictions than those stated in the GPL may be added to a
GPL-licensed code in the process of redistribution. However, GPLv2 was such that it was in-
compatible with many other licenses. A revised version, GPLv3, was created to provide for
greater compatibility with other licenses. For example, GPLv3 is compatible with the Apache
license 2.0. Code under the Apache license 2.0 may be combined with code covered by
GPLv3. But because of the copyleft element in the GPL, the resulting derivative or combined
works must be published using the GPLv3 license. In contrast with Version 2, GPLv3 in-
cludes a patent clause that passes on rights with regard to any possible patents of the licensor
if licensees need to use these in order to take advantage of the rights granted to them through
GPLv3 with regard to copyrights.

The Affero General Public License Version 3 (AGPLv3) is a license based on the concepts of
GPLv3. It has one additional condition that goes beyond the other GPL licenses. GPLv2 and
GPLv3 assume that software is distributed in the form of copies — copies, for example, on a
CD-ROM or available via downloads — that are obtained by the eventual users. The condi-
tions of the regular GPL versions are not triggered until such a case of distribution occurs. For
example, no source code has to be made available without redistribution. If, however, soft-
ware is made accessible as SaaS by cloud providers, no actual copies are distributed. This
means, in the case of GPLv2 and Version 3, that the cloud providers are not bound to provide
the source code of any potential modifications made by them. The AGPL was designed to
close this copyleft loophole by adding a condition for the usage of programs distributed via
computer networks. Cloud providers offering an AGPL-protected software on their server are
thus also required to provide the equivalent source code. ownCloud strategically provides the
server core under AGPLv3 license in order to have an additional incentive that would encour-

13 The different versions of the GPL license family can be downloaded from the GNU website
(http://www.gnu.org/licenses/).

14 In the GNU Manifesto, Richard Stallman outlines his concept of the project, his main aim being to develop a
free software operating system (http://www.gnu.org/gnu/manifesto.html).

Case-2016-01-Getting-Licensing-Right - http://pmbycase.com - 2018-08-07. 12Licensed under CC BY SA 4.0, see last page for authors and credits.

http://pmbycase.com/
http://www.gnu.org/gnu/manifesto.html
http://www.gnu.org/licenses/

age users to pay for the Enterprise Edition. OEMs wishing to use the ownCloud Server Edi-
tion to set up a FSS service hosted on their network resources are, due to the AGPL, required
to open-source all modifications they may have made to the ownCloud Core. They can offer a
derivative work based on ownCloud without open-sourcing their source code only if they use
the Enterprise Edition, where the Core is covered by the ownCloud Commercial License.

The Lesser General Public License (LGPL) was designed to provide protection to code li-
braries. The LGPL provides a weaker form of copyleft protection that applies to derivative
works only and not to combined works. As a result, programs using LGPL-protected libraries
can be licensed freely without the copyleft obligations, just like permissive licenses.

2.3 Licensing compatibility

Code components issued under different licenses may not always be legally combinable due
to the differing licensing terms. When complying with the terms of one license means violat-
ing the terms of the other, the situation can only lead to copyright infringement. The GPLv2,
for example, has proved itself to be a license that is incompatible with many other licenses,
even other FLOSS licenses (Lindberg, 2008). This can be largely attributed to the clause that
no further conditions are allowed to be added to the redistribution of GPL-licensed code. In-
compatibility with the GPLv2 can easily become an issue in the case of derivative or com-
bined works. For example, the Apache License 2.0 is incompatible with GPLv2 because the
Apache License 2.0 has certain provisions designed to circumvent any threats to free redistri-
bution arising from software patents that are not covered in GPLv2. It is not possible to create
derivative or combined works with Apache-licensed code and GPLv2-licensed code. GPLv3,
on the other hand, has been supplemented with a paragraph containing the same restrictions
concerning software patents, meaning that GPLv3 and Apache License 2.0 are compatible.

Due to copyleft, all derivative and sometimes also combined works resulting from the combi-
nation of reciprocally licensed code components must again be issued under a reciprocal li-
cense. This becomes especially interesting in the case of a proprietary software project in
which FLOSS components are to be incorporated, but where the aim is to retain the right to
publish the result under a proprietary software license. In this situation, reciprocal licenses are
not compatible with a proprietarily licensed code. The viral character of copyleft can also
jeopardize the publication of the end result under a proprietary license, certainly if the result is
a derivative work and with a high likelihood if it is a combined work. The safest way would
be combine it in a software package in the form of a collective work. This would reduce the
risk of the viral effect and ensure the best level of compatibility. The use of LGPL-licensed li-
braries in a proprietary software project would also exclude the risk of losing the right to
freely chose the form of license. The weak copyleft effect of the LGPL does not apply to com-
bined works. Permissive licenses, on the other hand, can be combined with proprietary li-
censes freely, as even a derivative work can be licensed without any restrictions. Exhibit 3
also shows how combinations with reciprocally licensed FLOSS can impinge on flexibility.

2.4 Dual and multiple licensing

The issue of software licensing can become particularly complex when FLOSS is involved. At
ownCloud, licensing is deeply interwoven with the company’s business model. This creates
complexity but also offers considerable opportunities, such as, for example, by allowing for
the use of open source but at the same time charging for licenses.

Case-2016-01-Getting-Licensing-Right - http://pmbycase.com - 2018-08-07. 13Licensed under CC BY SA 4.0, see last page for authors and credits.

http://pmbycase.com/

Dual licensing provides a way of issuing one software product under two different licenses.
Dual licensing requires full control of the copyright of the software module that is to be dis-
tributed under the two licenses (Olson, 2005).

Dual licensing unlocks new business opportunities for organizations with regard to FLOSS
projects because it allows them to distribute a single software product under a FLOSS and a
proprietary license. It is thus key to the generation of software licensing revenue by busi-
nesses employing the FLOSS concept and to making possible single vendor commercial open
source firms (Riehle, 2012).

Software can also be offered under more than two different licenses; this is called multiple li-
censing (Rosen, 2005). Assigning more than one license to a program is not only the basis for
the single vendor commercial open source business model. Dual licensing can also be impor-
tant in the case of software development in order to avoid complications with non-matching
licenses of single software modules that are to be combined. Developers who want to reuse
parts of code but are unable to do so because of their licenses can approach the copyright
owners and ask whether they would be prepared to allow their code to be issued under an ad-
ditional license that would make usage possible. This is also known as relicensing.

3. Complexity of Licensing at ownCloud

3.1 The licenses in use at ownCloud

ownCloud makes strategic use of the various kinds of licenses in order to achieve different
objectives. Alongside the already described FLOSS licenses, two types of proprietary licenses
are also important for ownCloud.

The ownCloud Commercial License is a proprietary license specifically designed to fit the
dual licensing strategy of ownCloud Inc. It is the most important license used in connection
with the Enterprise Edition. Dyroff and the other co-founders created the Commercial License
in order to be able to offer a proprietary license to their customers that would nevertheless in-
clude as many of the FLOSS-typical freedoms as possible. The Commercial License of own-
Cloud grants customers the right to examine the underlying source code and to modify it.
However, it is still a non-FLOSS license as it only allows these freedoms to paying customers
and restricts redistribution.15 Customers are not allowed to pass on copies. These license at-
tributes are particularly beneficial for customers as it enables them to seamlessly integrate the
ownCloud EFSS solution into their systems.

In addition, customers do not have to be afraid of accidentally open-sourcing their intellectual
property because of effects of copyleft, which could happen if they were to use a FLOSS

15 The ownCloud Commercial License can be viewed on the website of ownCloud Inc.
(https://owncloud.com/de/licenses/owncloud-commercial/).

Case-2016-01-Getting-Licensing-Right - http://pmbycase.com - 2018-08-07. 14Licensed under CC BY SA 4.0, see last page for authors and credits.

http://pmbycase.com/
https://owncloud.com/de/licenses/owncloud-commercial/

product instead. In addition, ownCloud EULAs grant usage rights for the proprietary version
of the Android client and of the iOS client.16

Exhibit 4 provides a summarized overview of the most important licenses at ownCloud.

3.2 The code components of ownCloud

ownCloud’s product architecture, consisting of various code components, played an important
role for the three co-founders when setting up their licensing strategy. Each edition of own-
Cloud basically has three main component types: the core module, apps, and three different
clients.

• The ownCloud Core represents the heart of the software suite and is the server pro-
gram that the users install on their network in order to host their own FSS service.

• The modular design of ownCloud allows users to supplement the core as required with
extra functionality in the form of apps. The apps for the Server Edition are offered
through the ownCloud App Store. These apps can be developed by all community
members who want to integrate any additional features in the core. ownCloud does not
necessarily have any control over the copyright of an app.

• The clients are applications that users can install on their various devices to access the
core and to provide synchronization with the core. When using clients, users do not
have to log into their own FSS server via their web browser. Furthermore, the clients
allow for additional functionality on the device side, such as seamless integration in
the filing structure of the operating system.

As part of the dual licensing strategy, all these single subcomponents can have more than one
license. The license attached to a component can differ according to whether it is used in the
Server or in the Enterprise Edition.

Figure 2: Overview of the components of the Server Edition and the attached licenses

The components of the Server Edition — being ownCloud’s FLOSS offering — are largely is-
sued under FLOSS licenses. As AGPLv3 is used for the ownCloud Core of the Server Edition,

16 ownCloud’s EULA for the Android and the iOS client can be viewed on the website of ownCloud Inc.
(https://owncloud.com/de/licenses/owncloud-android-application/).

Case-2016-01-Getting-Licensing-Right - http://pmbycase.com - 2018-08-07. 15Licensed under CC BY SA 4.0, see last page for authors and credits.

http://pmbycase.com/
https://owncloud.com/de/licenses/owncloud-android-application/

the whole edition is considered to be licensed under the AGPL. The only component of the
Server Edition not under a FLOSS license is the iOS client.

Figure 3: Overview of the components of the Enterprise Edition and the attached licenses

As the Enterprise Edition targets potential EFFS customers who will be required to pay fees in
order to be able to access it, the components are for the most part provided under proprietary
licenses. However, the technical setup of the single components does not differ from that of
the Server Edition, with the exception of the apps offered. In order to position the Enterprise
Edition on the EFFS market, the Enterprise Apps have been especially developed to meet the
demands of large enterprises. The Enterprise Apps therefore differ from the Server Apps on
offer. In addition, the Enterprise Apps are distributed together with the core of the Enterprise
Edition and do not represent optional add-ons, as they do in the case of the Server Edition.

3.3 Licensing and the ownCloud community

FLOSS licenses are crucial to FLOSS and open source software development. Without the ex-
plicitly granted rights, ownCloud could not have been shared freely and no one would have
been able to contribute to the ownCloud community project when it was launched back in
2010. Karlitschek wanted to make sure that ownCloud would not only start as FLOSS, but re-
main freely accessible to all interested parties in the future. Due to its copyleft attributes, the
GPL license family is especially well suited to making sure that this is the case.

Karlitschek chose the AGPLv3 for licensing the core because the ownCloud core is a server
software application that users could utilize to offer their own hosted FSS service. Only the
AGPL’s network reciprocity feature was able to ensure that, within this possible setting, the
source code of possible derivatives would remain openly accessible. In addition, use of AGPL
and GPL sent out a powerful message that managed to attract like-minded people wishing to
contribute to a durable FLOSS alternative to mainstream FSS services. For Karlitschek, it was
also important that ownCloud would be compatible with the KDE solutions and the overall
Linux family.

3.4 Licensing and ownCloud software development

Just like most other software projects, ownCloud reuses code written by others. This is sup-
ported by the common software design technique of modular programming. Software is de-

Case-2016-01-Getting-Licensing-Right - http://pmbycase.com - 2018-08-07. 16Licensed under CC BY SA 4.0, see last page for authors and credits.

http://pmbycase.com/

signed on a modular basis, with the functionalities being segregated in different modules. This
makes code parts more easily replaceable and facilitates the process of creating new software
by recombining the single components. Due in particular to the free redistribution require-
ment, many FLOSS components are available for reuse. Yet developers have to respect the
terms of the different licenses attached to the single programs. When the different modules are
combined, the compatibility of the single licenses also has to be borne in mind.

ownCloud exploits the benefits of FLOSS components. Some programs are offered solely as
modules for integration in other programs in order to supplement these with a certain func-
tionality. SabreDAV, for example, is such a module that allows ownCloud to use the open
WebDAV protocol for file access.

A particularly efficient way to reuse code is offered via libraries. Using libraries means that
pre-written code does not have to be duplicated and physically incorporated into different
parts of a program in order to make it work. Instead, the program can simply call the library to
retrieve its functionality whenever this is needed. Thus, the code of the library can be pro-
vided in addition to the program instead of being actually incorporated. ownCloud uses many
different libraries as a basis for its different components.

Whenever ownCloud falls back on code created by others, the licenses attached to the single
modules and libraries have to be evaluated. The situation when developers evaluate and ac-
cept the licensing terms of desired code modules can be referred to as the in-licensing of soft-
ware (Rosen, 2005). Modules that are used in this way are referred to as third party software.
For example, when ownCloud uses a LGPL-licensed library developed by another FLOSS
project, this can be described as third party FLOSS. When in-licensing, developers need to
bear in mind the possible consequences that acceptance of the licensing terms will have on the
further development and — most especially — the distribution of their software.

3.5 Licensing and the ownCloud business model

With its single vendor commercial open source business model, ownCloud Inc. generates rev-
enue not only by providing services and support. One important revenue source are the sub-
scription fees paid by the businesses the firm has been able to secure as customers of the En-
terprise Edition. Enterprise customers pay subscription fees for permission to use the Enter-
prise Edition because that is the only way to gain access to additional value in the form of ex -
tra functionality, brandable clients, and the avoidance of licensing issues.

In order to realize the planned business model, the co-founders of ownCloud had to establish
a dual licensing strategy. On the one hand ownCloud Server was kept under the AGPL license
and, as such, offered all the FLOSS-typical freedoms. On the other hand, the company li-
censed ownCloud Server under their own created proprietary license, allowing ownCloud Inc.
to add exclusive extra features and to offer the software in the form of the Enterprise Edition
under the ownCloud Commercial License.

This complex dual licensing strategy shows that the co-founders had to put considerable
thought into the process of choosing the best licenses for their own software — a process also
known as out-licensing (Rosen, 2005). Their range of choice, of course, was extensively de-
termined by the degree of freedom provided by the terms of in-licensed software. Most espe-
cially, if a reciprocal FLOSS licensed module were modified, almost no freedom of choice
would remain. In principle, the licensor first needs to meet the obligations imposed by the li-
censes of reused third party components before making any own plans. Another major factor

Case-2016-01-Getting-Licensing-Right - http://pmbycase.com - 2018-08-07. 17Licensed under CC BY SA 4.0, see last page for authors and credits.

http://pmbycase.com/

is the degree to which the owner intends to share IPR — ownCloud’s decision to establish a
proprietary software by using the dual licensing strategy indicates that this factor was a major
determinant.

Figure 4: Setup of the ownCloud Core

For its core, ownCloud also in-licenses several components and applies the dual licensing
strategy for out-licensing. Figure 4 provides insight into the next deeper layer of the core. On
this level it consists of the core program developed by ownCloud that works with different
code libraries, all providing certain functionalities needed by the core. The code libraries used
represent third party open source code for which ownCloud does not hold the copyright.

The reciprocal AGPL was selected to make the software available to open source users. This
was considered important in order to incentivize ownCloud Server users to change to the En-
terprise Edition, which requires payment of a subscription fee. Hence customers who plan to
make modifications to ownCloud, or to incorporate it into their existing software, may prefer
to pay money for the Enterprise Edition. This is due to the fact that, in the case of the gratis
Server Edition, the copyleft requirements of the AGPL and GPLv2 might require customers to
publish their code under the same reciprocal license. This means they would need to open-
source code they prefer to keep closed. When using the Enterprise Edition instead, customers
are protected — by ownCloud’s Commercial License — from the viral effect of reciprocal
FLOSS licenses, but also have the freedom to make modifications or additions.

As the example of the ownCloud Core shows, different priorities apply with regards to in-li-
censing. ownCloud prefers to use permissive licenses for in-licensing components, as they do
not have to worry about these licenses imposing restrictions on their dual licensing strategy.
The only reciprocal license ownCloud uses for in-licensing is the LGPL, as linking to LGPL-
licensed libraries does not preclude a dual licensing strategy assuming these libraries are not
modified by ownCloud.

However, permissive licenses or the LGPL do not meet ownCloud’s requirements for out-li-
censing. In the case of the Server Edition, they provide insufficient protection as the code they
are attached to can easily be incorporated into proprietary third party software. On the one
hand, permissive licenses cannot guarantee that derivatives of the Server Edition remain open
source. On the other hand, they allow competitors to reuse the innovation developed for own-
Cloud without any conditions being imposed. So when out-licensing, only reciprocal FLOSS
licenses can be used strategically as a barrier, the result being that larger enterprises prefer to

Case-2016-01-Getting-Licensing-Right - http://pmbycase.com - 2018-08-07. 18Licensed under CC BY SA 4.0, see last page for authors and credits.

http://pmbycase.com/

avoid any risks by subscribing to the Enterprise Edition. AGPL has been chosen specifically
with potential OEM users of the Server Edition in mind. If the core of the Server Edition were
to be offered under a GPL version, OEMs could exploit the loophole in the copyleft protection
by not directly distributing the software and offering it as SaaS. But the network reciprocity
feature of the AGPL guarantees that OEMs are also required to open-source any modifications
they might make. Also, the AGPL provides an incentive for this special customer group to
switch to the Enterprise Edition instead. Here, the Commercial License allows users to make
all necessary changes, but does not require them to open-source the respective code.

The co-founders had to tackle a final complexity in order to be able to out-license the single
components of the FSS software suite under the dual licensing strategy. Licensors need to
have ownership of the copyright of components whose rights they wish to grant to others, or
at least have permission to redistribute the software. Companies need to establish this control
over their product in two ways. Firstly, they have to make sure that they have the right to use
and distribute all code contributions from all developers involved. This can also have an im-
pact on open source development. Usually, all developers planning to furnish code for the
project are required to assign the rights of use of copyrights and patents to their employers or
organizations governing the project. ownCloud Inc. provides for this by requiring all develop-
ers who want to contribute to the development of the core or clients to sign a contributor
agreement.17 In addition, companies need to make sure that they have permission to redis-
tribute and license possible third party software components reused for the software. This is
already has to be borne in mind when in-licensing components.

Because of the enormous impact of licensing on a company’s success, software companies
need to be in control of in-licensing decisions on the one hand and out-licensing on the other.

They need to have their developers trained so that they are capable of making decisions in ac-
cordance with the wishes of their employers. It is also important to establish policy guidelines
(Helmreich & Riehle, 2012).

At ownCloud, key licensing decisions are always made by the board, just as the co-founders
together developed the basic licensing concept for ownCloud Inc. Regarding in-licensing of
third party FLOSS, only modules and libraries with permissive or, at most weak reciprocal li-
censes are accepted. On the other hand, as part of their dual licensing strategy the co-founders
made the decision that, with regard to the FLOSS modules, robust copyleft licenses would al-
ways be used for distributing their product. This ensures that the software always stays
FLOSS, which was the primary goal of Karlitschek in the early days of the ownCloud com-
munity. For the company too, however, this is of strategic relevance as only a GPL or similar
can prevent proprietary companies from evolving into competitors using the groundwork put
in place by ownCloud.

17 The ownCloud Contributor agreement can be viewed on the website of ownCloud Inc.
(https://ownCloud.org/contribute/agreement/).

Case-2016-01-Getting-Licensing-Right - http://pmbycase.com - 2018-08-07. 19Licensed under CC BY SA 4.0, see last page for authors and credits.

http://pmbycase.com/
https://ownCloud.org/contribute/agreement/

4. The iOS Client Licensing Issue

4.1 The mobile clients of ownCloud

The various clients are key components of the ownCloud product, as only they facilitate a
genuinely mobile file sync and sharing experience that allows users to access their files on
one device in the currently updated status as last saved on another. It took ownCloud almost
two years to get file synchronization up and running as desired. In addition to ownCloud’s
desktop client, which is available for PCs running Windows, MacOS or Linux, ownCloud of-
fers iOS and Android clients to cover most mainstream mobile operating systems.

All clients have the same technical structure in both editions, but as part of ownCloud’s dual
licensing strategy the licenses they are available under can differ. Both clients are split into a
front end and a logical component. The frontend handles the display of the data for the user
and was developed by ownCloud Inc., whereas the backend (logical component) enables the
synchronization mechanism and was in-licensed under MIT licenses in accordance with own-
Cloud’s policy of only reusing components under a permissive license or LGPL.

Figure 5: Setup of the Android mobile client Figure 6: Setup of the iOS mobile client

Originally, the development of the clients had been undertaken by ownCloud Inc. In August
2012, when ownCloud released the first version of its mobile clients, it was decided that only
the Android client was to be open-sourced in order to enable the community to participate. In
line with the dual licensing strategy, the Android client was out-licensed via a GPLv3 for the
Server Edition and under an ownCloud proprietary license agreement for the Enterprise Edi-
tion. With regard to the iOS client, the ownCloud management decided at that time that they
would only be able to out-license it under a proprietary license agreement.

In 2010 Apple, for its part, had stopped accepting any apps licensed under a GPL license as it
was not possible to rule out incompatibilities between the license and the iOS App Store terms
(Contributions, 2010). But ownCloud’s distribution strategy of mobile clients — as designed
by the three co-founders — differentiated between the Server and Enterprise Edition. Users of
the Server Edition would be able to purchase clients from the online app marketplaces of Ap-

Case-2016-01-Getting-Licensing-Right - http://pmbycase.com - 2018-08-07. 20Licensed under CC BY SA 4.0, see last page for authors and credits.

http://pmbycase.com/

ple and Google only. The right to redistribute clients freely to their end-users as needed would
be retained exclusively by ownCloud’s Enterprise Edition customers. To keep that strategy in-
tact, the iOS client of the Server Edition had to be compatible with the terms of the iOS App
Store. Thus the co-founders came to the conclusion that they would need to go without an
open-sourced version of the iOS client for the present.

4.2 The licensing of the iOS client

Holger Dyroff, still waiting at the traffic light, recalled the situation in which their decision,
made back in 2012, had left them. He now reviewed the differences between the Android and
the iOS client.

The Android client was dual-licensed and available under the GPLv2 and a proprietary license
agreement, whereas the iOS client was available only under ownCloud’s proprietary license
agreement. Also, the source code of the iOS client was not made publicly available. own-
Cloud Server Edition users and community members had no choice but to use this proprietary
application if they wanted to get the best ownCloud experience on their iPhone or iPad. An-
droid users, however, did not have to leave the FLOSS universe as they were offered the
GPLv2 licensed client. Consequently, only Android users were able to review the code of the
client and to participate in the development of the software.

Moreover, the clients had been developed using different programming languages. The iOS
client is based on Objective-C technology whereas the Android client employs Java, which is
more popular in FLOSS communities (Metz, 2015).

There was a third difference in terms of the way in which the clients could be distributed. In
order to be obtainable by users, the mobile clients had to be offered through the application
marketplaces of Google and Apple. The Google Play Store accepts GPL-licensed applications
for distribution. In principle, ownCloud Server users were able to upload their own variations
of the ownCloud Android client, also in branded form even though ownCloud Inc. aims to en-
sure that only Enterprise Edition customers should be given the option of labeling clients with
their own logo. That made the Android client more commercially utilizable for ownCloud
Server users. Without the Enterprise Subscription, OEMs could also offer an Android sync
client with their corporate logo without needing to subscribe to the ownCloud Enterprise edi-
tion. OEMs needed only to be willing to accept the GPL conditions and to open-source their
code if required to do so by the license.

The ownCloud management team had a certain strategy in mind when the mobile clients were
first launched. They agreed that the Android app would be more important for the community,
as Android had more users in the ownCloud community than iOS did. Therefore, and in order
to comply with their FLOSS principles, they did not hesitate to open-source the Android
client. But ownCloud Inc. was also seeking to recruit larger businesses as customers for their
Enterprise Edition. Apple devices were known to be very popular in that customer segment.
The rationale of Dyroff, Karlitschek and Rex was that the customer group they were targeting
would not be able to also distribute an iOS sync client in their portfolio in order to cover all
requirements for an efficient EFFS solution.

Thus, the iOS client was offered solely under a proprietary license not only because of the in-
compatibility of GPL and Apple’s iOS App Store. The iOS client was also assigned a propri-
etary license agreement to avoid giving the target group another reason to stick with the gratis
ownCloud Server solution. In this way, it was ensured that no potential customer would be

Case-2016-01-Getting-Licensing-Right - http://pmbycase.com - 2018-08-07. 21Licensed under CC BY SA 4.0, see last page for authors and credits.

http://pmbycase.com/

able to offer the complete set of sync clients. By using this approach, the co-founders hoped
to create one more incentive that would persuade potential customers to choose the Enterprise
Edition. Also, OEMs would not have the opportunity to structure their own offer with their
logo on iOS clients. So the strategy not to open-source the iOS client as the only component
of the ownCloud architecture was adopted with an eye to generating revenue and hence com-
mercial success — factors even the most dedicated FLOSS firm finds it hard to neglect.

But the strategic decision came at a price. It did not take long for a lively discussion to be
sparked inside the community. Some members simply complained that they were not able to
review the code, or requested open-sourcing of the code in the near future; ownCloud, they in-
sisted, should also openly publish the iOS source code on GitHub.18 Others even questioned
the whole ownCloud solution, because it had a fully proprietary component. Although only a
fraction of the large community was really troubled by the setup, the arguments weighed
heavily in the minds of the three co-founders.

In addition, ownCloud management had to realize that the development of the Android appli-
cation was progressing much faster than that of the iOS client. The iOS app was missing fea-
tures which already had already been implemented in the Android solution. The iOS client
was developed with the exclusion of public contributors. As there were no user stories of han-
dling by the community that could be published, all progress needed to be made by ownCloud
employees. Last but not least, the ownCloud iOS development team had no assistance with
finding, characterizing, and fixing bugs.

Dyroff wanted to use the meeting with the other co-founders to finally agree on measures to
address these issues. On the other hand he knew they would have to be careful and keep the
right barriers in place in order to prevent potential customers from getting too cozy with their
gratis FLOSS offering. Like any company, they could not allow their business success to be
jeopardized. If they were to open-source the iOS client, which FLOSS license would it be best
to use? Was a multiple licensing strategy, as with the other clients, ultimately the better way?
Could they find a solution that would allow for both; that would eliminate the negative effects
associated with the iOS client while also providing an incentive for potential customers to
subscribe to the Enterprise Edition?

18 GitHub is a web-based repository hosting service that allows for the collaborative development of software.
Since 2012, the activities of the ownCloud community have been undertaken on GitHub as a public reposi-
tory (https://github.com/owncloud).

Case-2016-01-Getting-Licensing-Right - http://pmbycase.com - 2018-08-07. 22Licensed under CC BY SA 4.0, see last page for authors and credits.

http://pmbycase.com/
https://github.com/owncloud

References

Arlotta, C. (2014, July 8). Gartner Magic Quadrant for Enterprise File Synchronization and Sharing.
Retrieved February 20, 2016, from http://talkincloud.com/cloud-computing-research/070814/gartner-
magic-quadrant-enterprise-file-synchronization-and-sharing

Contributions, B. (2010, May 26). More about the App Store GPL Enforcement. Retrieved January 16,
2016 from http://www.fsf.org/blogs/licensing/more-about-the-app-store-gpl-enforcement

Endsley, R. (2011, December 14). Former SUSE Exec Joins Open Source ownCloud, Launches
Commercial Entity. CMS Wire, Retrieved October 25, 2015, from
http://www.cmswire.com/cms/document-management/former-suse-exec-joins-open-source-owncloud-
launches-commercial-entity-013849.php

Evans, D. S., & Layne-Farrar, A. (2004). Software patents and open source: the battle over intellectual
property rights. Virginia Journal Of Law & Technology, 9, 10.

Fitzgerald, B. (2006). The transformation of open source software. Mis Quarterly, 587-598.

FSF (n.d.). What is Copyleft. Retrieved January 15, 2016, from
http://www.gnu.org/copyleft/copyleft.html

Helmreich, M., & Riehle, D. (2012). Geschäftsrisiken und Governance von Open Source in
Softwareprodukten. HMD Praxis Der Wirtschaftsinformatik, 49(1), 17-25.

Jaeger, T. & Metzger, A. (2011). Open Source Software: Rechtliche Rahmenbedingungen der Freien
Software. München: C.H. Beck Verlag.

Karlitschek, F. (2014, June 19). Why I Built ownCloud and Made It Open Source.Linux.com,
Retrieved November 10, 2015, from https://www.linux.com/news/enterprise/cloud-
computing/777158-why-i-built-owncloud-on-open-source

Laurent, A. M. S. (2004). Understanding open source and free software licensing. Sebastopol, CA:
O'Reilly Media.

Lerner, J., & Tirole, J. (2002). Some simple economics of open source. The journal of industrial
economics, 50(2), 197-234.

Lindberg, V. (2008). Intellectual property and open source: a practical guide to protecting code.
Sebastopol, CA: O'Reilly Media.

Metz, C. (2015, August 20). Github's Top Coding Languages Show Open Source Has Won. Wired,
Retrieved November 03, 2015, from http://www.wired.com/2015/08/github-data-shows-changing-
software-landscape/

IDC (2014). New IDC Worldwide File Synchronization and Sharing Forecast Shows Market Will
Grow to $2.3 Billion by 2018. Retrieved October 25, 2015, from http://www.idc.com/getdoc.jsp?
containerId=prUS25192614

Olson, M. (2005). Dual licensing. Open Sources 2.0, 71-90. Sebastopol, CA: O'Reilly Media.

ownCloud (2015). ownCloud kann Zahl der Kunden verdoppeln und Umsatz verdreifachen [Web Blog
Post]. (2015, September 22). Retrieved November 10, 2015, from https://owncloud.com/de/owncloud-
kann-zahl-der-kunden-verdoppeln-und-umsatz-verdreifachen/

ownCloud Logo [Image]. (n.d.). Retrieved February 19, 2016, from
http://tsdr.uspto.gov/#caseNumber=85979290&caseType=SERIAL_NO&searchType=statusSearch

Raymond, E. S. (2001). The Cathedral & the Bazaar: Musings on linux and open source by an
accidental revolutionary. Sebastopol, CA: O'Reilly Media.

Case-2016-01-Getting-Licensing-Right - http://pmbycase.com - 2018-08-07. 23Licensed under CC BY SA 4.0, see last page for authors and credits.

http://pmbycase.com/
http://tsdr.uspto.gov/#caseNumber=85979290&caseType=SERIAL_NO&searchType=statusSearch
https://owncloud.com/de/owncloud-kann-zahl-der-kunden-verdoppeln-und-umsatz-verdreifachen/
https://owncloud.com/de/owncloud-kann-zahl-der-kunden-verdoppeln-und-umsatz-verdreifachen/
http://www.idc.com/getdoc.jsp?containerId=prUS25192614
http://www.idc.com/getdoc.jsp?containerId=prUS25192614
http://www.wired.com/2015/08/github-data-shows-changing-software-landscape/
http://www.wired.com/2015/08/github-data-shows-changing-software-landscape/
https://www.linux.com/news/enterprise/cloud-computing/777158-why-i-built-owncloud-on-open-source
https://www.linux.com/news/enterprise/cloud-computing/777158-why-i-built-owncloud-on-open-source
http://www.gnu.org/copyleft/copyleft.html
http://www.cmswire.com/cms/document-management/former-suse-exec-joins-open-source-owncloud-launches-commercial-entity-013849.php
http://www.cmswire.com/cms/document-management/former-suse-exec-joins-open-source-owncloud-launches-commercial-entity-013849.php
http://www.fsf.org/blogs/licensing/more-about-the-app-store-gpl-enforcement
http://talkincloud.com/cloud-computing-research/070814/gartner-magic-quadrant-enterprise-file-synchronization-and-sharing
http://talkincloud.com/cloud-computing-research/070814/gartner-magic-quadrant-enterprise-file-synchronization-and-sharing

Rex, M. (2016, January 26). ownCloud grows over 100% in 2015 [Web Blog Post]. Retrieved January
26, 2016, from https://owncloud.com/owncloud-grows-100-2015/

Riehle, D. (2012). The single-vendor commercial open course business model. Information Systems
and e-Business Management, 10(1), 5-17.

Rosen, L. E. (2005). Open source licensing: Software freedom and intellectual property law. Upper
Saddle River, NJ: Prentice Hall PTR.

Stallman, R. (n.d.). FLOSS and FOSS. Retrieved January 25, 2016 from
http://www.gnu.org/philosophy/floss-and-foss.html

Stallman, R. (2009). Viewpoint Why open source misses the point of free software. Communications
of the ACM, 52(6), 31-33.

Williams, S. (2002). Free as in Freedom: Richard Stallman�s Crusade for Free Software.

Case-2016-01-Getting-Licensing-Right - http://pmbycase.com - 2018-08-07. 24Licensed under CC BY SA 4.0, see last page for authors and credits.

http://pmbycase.com/
http://www.gnu.org/philosophy/floss-and-foss.html
https://owncloud.com/owncloud-grows-100-2015/

Appendix

Exhibit 1

Exhibit 1: Summary of the ownCloud business model based on the
the Business Model Canvas Template of Alexander Osterwalder

Case-2016-01-Getting-Licensing-Right - http://pmbycase.com - 2018-08-07. 25Licensed under CC BY SA 4.0, see last page for authors and credits.

http://pmbycase.com/

Exhibit 2

ownCloud Server Edition ownCloud Enterprise Edition

Type of
Licensing

FLOSS-licensed Proprietarily licensed

Gover-
nance

ownCloud community ownCloud Inc.

Targeting

FSS market

• Individuals

• Small- to medium-sized organiza-
tions

EFFS market

• Large organizations

• OEMs

Based on ownCloud Server Edition

Distribu-
tion of
mobile
clients

Google Play and IOS App Store

• Users need to purchase mobile
clients from the online app market-
places of Apple and Google.

Companies can redistribute clients under
their own terms

• Customers can obtain mobile clients
directly

• Companies can redistribute clients to
their employees or own customers

• End users do not have to purchase
mobile clients from the Apple or
Google online app markets

Additional
value for
users

Community Applications

• Available for a fee via the ownCloud
App Store

• Offer additional features

• ownCloud as a platform for function-
ality beyond FSS

• Sample apps: TextEditor, Anti-virus,
Gallery, etc.

Enterprise Applications

• Distributed in combination with the
ownCloud Core

• Features typically interesting for
large companies

• Sample apps: Microsoft Share Point
Integration, Logging, File Firewall,
etc.

Commercial License

• Enterprises can avoid the FLOSS-
associated risk of having to unwill-
ingly share

• The Commercial License offers al-
most the same freedoms as FLOSS
licenses with the exception of redis-
tribution

Rebranding of Clients

• Customers can use their own logo to
integrate ownCloud into their corpo-
rate design

Availabil-
ity

Freely downloadable and usable

• Support via the community forums

Enterprise Subscription

• 5x12 email and phone support

• From 50 up to 100,000 users

Standard Subscription

• 5x8 email support

• From 50 up to 1,000 users

Custom Subscription

• 24x7 email and phone support

• From 10,000 users

Table 1: Comparison of ownCloud editions

Case-2016-01-Getting-Licensing-Right - http://pmbycase.com - 2018-08-07. 26Licensed under CC BY SA 4.0, see last page for authors and credits.

http://pmbycase.com/

Exhibit 3

Derivative Work Combined Work Collective Work

Type of Modi-
fication/
Combination

Modification/ incorporation Linking Mere aggregation of single
components

Example ap-
plication

Modification of reciprocal li-
censed source code to add
a new feature

Usage of libraries or plug-
ins which are under a re-
ciprocal license

Combination of different
programs in a software
suite with one component
under a reciprocal license
— similar to Linux distribu-
tion

Copyleft ef-
fect

Resultant software is dis-
tributed under same recip-
rocal license

Whole combination is dis-
tributed under same recip-
rocal license — exception:
LGPL

No effect; no freedom of
choice with regard to li-
censing options for any el-
ements of combination—
all components keep their
original licenses

Likelihood of
viral effect

Certain High Low

Compatibility All other licenses need to
match the terms of the re-
ciprocal license used

All other licenses need to
match the terms of the re-
ciprocal license used

Unproblematic

Table 2: The various copyleft effects associated with different forms
of modification and combination of software

Case-2016-01-Getting-Licensing-Right - http://pmbycase.com - 2018-08-07. 27Licensed under CC BY SA 4.0, see last page for authors and credits.

http://pmbycase.com/

Exhibit 4

License
Name

License
Type

Usage at
ownCloud

Key
Properties

Derivative
Work

Combined
Work

Collective
Work

GPLv2 Reciprocal li-
cense

Out-licensing Extensive
copyleft effect

Derivative
must be re-
leased under
GPL

Combination
must be re-
leased under
GPL

No restric-
tions

Attribution

GPLv3 Reciprocal li-
cense

Out-licensing Extensive
copyleft effect

Derivative
must be re-
leased under
GPL

Combination
must be re-
leased under
GPL

No restric-
tions

Enhanced
compatibly

Software
patents

Attribution

AGPLv3 Reciprocal li-
cense

Out-licensing Extensive
copyleft effect

Derivative
must be re-
leased under
AGPL

Combination
must be re-
leased under
AGPL

No restric-
tions

Network reci-
procity

Software
patents

Attribution

LGPL Reciprocal li-
cense

In-licensing Weak copy-
left effect

Derivative
must be
LGPL- or
GPL-licensed

No restric-
tions

No restric-
tions

Attribution

MIT Permissive li-
cense

In-licensing Attribution No restric-
tions

No restric-
tions

No restric-
tions

2-clause
BSD

Permissive li-
cense

In-licensing Attribution No restric-
tions

No restric-
tions

No restric-
tions

Apache
2.0

Permissive li-
cense

In-licensing Attribution No restric-
tions

No restric-
tions

No restric-
tionsSoftware

patents

own-
Cloud
commer-
cial

Proprietary li-
cense

Out-licensing No redistribution allowed

Otherwise grants rights similar to those permitted by FLOSS

own-
Cloud
EULA

Proprietary li-
cense

Out-licensing No rights granted — no free use, no open source code, no
modification, no free distribution — unless explicitly permit-
ted by ownCloud

Table 3: Most important licenses used by ownCloud

Case-2016-01-Getting-Licensing-Right - http://pmbycase.com - 2018-08-07. 28Licensed under CC BY SA 4.0, see last page for authors and credits.

http://pmbycase.com/

About this case

This case was taken from the Product Management by Case collection, a collection of free
business cases for teaching product management, available at http://pmbycase.com.

Conceptual guidance and teaching notes are available to lecturers. To receive these, please
send an e-mail to to dirk@riehle.org.

Case license

© 2016 Johannes Christian Neupert. Licensed under CC-BY 3.0.

© 2018 Dirk Riehle. CC BY SA 4.0.

Case authors

Content contributions by Johannes Christian Neupert, Dirk Riehle.

Copy-editing by Grace Ting and FAU Sprachendienst.

Case data

CaseShortCode: Case-2016-01-Getting-Licensing-Right

CaseFirstAuthor: Johannes Christian Neupert

CaseFileLicense: CC BY SA 4.0

CaseRevision: 180807

More cases from PM by case

Case 2012-01: Ensuring innovation at Method Park

Case 2013-02: Two-sided markets at Netdosis

Case 2014-01: User experience design at Immowelt

Case 2014-02: Switching suppliers at Nokia

Case 2014-03: Specifying ‘wow!’ at Elektrobit

Case 2016-01: Licensing choices at ownCloud

Case 2016-02: Stock options at Caldera

Case 2016-03: Hard software marketing choices at ownCloud

Case 2016-04: Pricing at Everest SARL

Case 2017-01: The case of SUSE Manager

Case-2016-01-Getting-Licensing-Right - http://pmbycase.com - 2018-08-07. 29Licensed under CC BY SA 4.0, see last page for authors and credits.

http://pmbycase.com/
mailto:dirk@riehle.org
http://pmbycase.com/
http://pmbycase.com/

	1. Introduction to ownCloud
	1.1 Project and company
	1.2 Business model
	1.3 Why open source?

	2. Software Licensing
	2.1 Intellectual property
	2.2 Free/libre, and open source software licensing
	2.3 Licensing compatibility
	2.4 Dual and multiple licensing

	3. Complexity of Licensing at ownCloud
	3.1 The licenses in use at ownCloud
	3.2 The code components of ownCloud
	3.3 Licensing and the ownCloud community
	3.4 Licensing and ownCloud software development
	3.5 Licensing and the ownCloud business model

	4. The iOS Client Licensing Issue
	4.1 The mobile clients of ownCloud
	4.2 The licensing of the iOS client
	Exhibit 1
	Exhibit 2
	Exhibit 3
	Exhibit 4

	About this case
	Case license
	Case authors
	Case data
	More cases from PM by case

