Theory Presentation

Using the Handbook Method

Prof. Dr. Dirk Riehle

Friedrich-Alexander University Erlangen-Niirnberg

2021-03-23 Dagstuhl Seminar

Licensed under CC BY 4.0 International

http://creativecommons.org/licenses/by/4.0/

Theory Building and Validation

Incremental theory building B Theory validation
Initial theory creation
®
Hypothesis testing
.
.
* .
|
) §

L]
~ -y R
Theory evaluation

Not drawn to scale or effort involved

[1] See https://dirkriehle.com/2020/02/21/theory-building-and-validation-in-computer-science/ 2

https://dirkriehle.com/2020/02/21/theory-building-and-validation-in-computer-science/

What is a Theory?

* Theory
 Knowledge to be used for correct prediction (and reliable outcome)

* Science
* The process of building and validating theories

Theory Presentation & Handbook Method 4
© 2021 Dirk Riehle - Some Rights Reserved

Maxwell’'s Equations [1]

Name Integral equations Differential equations
Gauss's law # E- dS——fffpdV VOEzsﬁ
0
Gauss's law for magnetism # B-dS=0 V-B=0
o - d
Maxwell Faraday-equat.lon j{ E.ar—_ 9 ff B.ds UxE— _8_B
(Faraday's law of induction) 5 dt J/s ot
Ampere's circuital law (with - d . OE
Maxwell's addition) 3EB df = pyg (/L J-dS + ¢ i /]; E dS) V xB =y (J +e9g— Y
o) o _ Theory Presentation & Handbook Method 5
[1] See https://en.wikipedia.org/wiki/Maxwell%27s_equations © 2021 Dirk Riehle - Some Rights Reserved

https://en.wikipedia.org/wiki/Maxwell%27s_equations

companies. Figure 1 shows problems with organizational struc-
ture, and Figure 2 shows how these problems affect the domain
engineering process. Both figures share some of the same
causes; they have been split up for readability purposes.

The key result is the following:

A root cause, the separation of product units as profit cen-
ters from a platform organization as a cost center, leads to
delayed deliveries, increased defect rate, and redundant
software components.

In our case studies, the business unit owns all products and the
platform, a product unit develops a particular product, and a
platform organization supports the product units in their work
by providing shared reusable assets. The business units in our
case studies are all structured into product units as profit centers
and the platform organization as a cost center.

As Figure 1 shows, the problems encountered with the orga-
nizational structure are traced back to the “separation of product
units as profit centers and platform organization as cost center”,
which makes them “silos” in the language of our interview part-
ners, that is, organizational units that do not collaborate suffi-
ciently. Specifically, the “separation of product units as profit
centers” leads to

e “lack of global business unit perspective” where each
product unit acts in their own interests irrespective of pos-
sible synergies from collaboration,

o “insufficient trust between product units” where other
product units are viewed as threats or competitors rather
than possible collaborators,

* “power play between product units” where managers in
some or all of the product units are fighting to enforce their
interests irrespective of other product unit needs,

Theory Presentation using Prose [1]

e “insufficient developer networking” where developers do
not find the time to talk to each other across the organiza-
tional unit boundaries.

In addition, the separation starves the platform organization for
resources. This leads to

e “lack of resources at platform organization”, because profit
centers responsible for their own revenue are always in a
stronger position to hire developers than any cost center.

Figures 1 and 2 do not show every cause and effect relationship,
and discussing all interactions is beyond a reasonable length for
this article. In the following subsections, we therefore focus on
the following three central cause-and-effect chains:

1. Lack of resources at platform organization — Delayed do-
main artifact realization — Delayed product delivery

2. Power play between product units — Poorly prioritized do-
main requirements — Rework and wasted effort — De-
layed product delivery

3. Insufficient intra-organizational-unit collaboration — Lim-
ited understanding of other organizational units — Unclear
reusable assets requirements — Insufficient reusable asset
quality — Increased defect rate

We chose these chains for presentation because they received
the most mentions and interest in our interviews.

4.2.1 Chain 1: Lack of resources

In all three cases, the platform organization had a significantly
higher workload than any of the product units, despite the more
direct pressure on the product unit to deliver a product.

“All this work overload leads to lower code quality. I just
finish up as quickly as I can and then move on.” Developer
(platform), case 1.

[1] See Riehle, D., Capraro, M., Kips, D., & Horn, L. (2016). Inner Source in Platform-Based Product
Engineering. IEEE Transactions on Software Engineering vol. 42, no. 12 (December 2016), 1162-1177.

https://dirkriehle.com/2016/06/09/inner-source-in-platform-based-product-engineering/
https://dirkriehle.com/2016/06/09/inner-source-in-platform-based-product-engineering/

Theory Presentation Using Cause-Effect Diagrams

Problems from and with
Organizational Structure

Lack of global business
unit perspective

Separation of product

12,3

Insufficient trust between
product units

1,2,3

Y

Limited understanding of
needs of other
organizational units

1,2,3

units as profit centers

12,3

Power play between
product units

>

Insufficient intra-
organizational-unit
collaboration

1,2,3

1,2,3

Insufficient
standardization on tools,
methods, and processes

Insufficient developer
networking

1,2

>

Lack of resources at
platform organization

Lack of time to act
beyond immediate needs

123

1,2

1,2,3

Theory Presentation & Handbook Method
© 2021 Dirk Riehle - Some Rights Reserved

I

Theory Presentation Using Hypotheses

5.2.2 Hypotheses and Predictions
Our case study companies have been continuing their efforts. However, it is too early to tell whether our recommendations have
been beneficial to them.

The theories we present are only as good as the hypotheses that they generate and that can be validated in future work. Such
confirmatory research will also allow for generalized conclusions that are not possible from pure case study research.

H1 Resistance and misunderstandings (like expected lower code quality of inner source components) can be addressed success-
fully by way of education and active participation in the practice of inner source software development.

This hypothesis is likely to evaluate to true, given the change in public opinion on the use of and participation in open source soft -
ware projects from a negative to a positive stance.

H?2 Psychological openness or resistance to inner source (i.e. desire or fear to work under quasi-public scrutiny) depends on man -
ager and developer personalities and is not a function of organizational structure or process.

Thus, we suggest that open source and inner source competencies are structurally similar, if not isomorphic. This is not surprising

H5 While there is no doubt about the need of platform software and shared reusable assets, a platform development organization
may not be needed any longer. It can be replaced by an inner source program.

This is an interesting though probably controversial hypothesis: If large companies can work together in an open source foundation
to develop shared infrastructure components, why can’t product units within an organization work together to create a platform of 8
shared reusable assets without the need for a dedicated organizational unit that maintains this platform?

Theory Presentation Using Research Models

Theory Presentation & Handbook Method 9
© 2021 Dirk Riehle - Some Rights Reserved

Purpose of Theory Presentation

Theory Presentation in the Scientific Process

Theory Theory
creation / revision presentation

Theory
evaluation

Theory Presentation & Handbook Method 11
© 2021 Dirk Riehle - Some Rights Reserved

The Next Step After Theory Presentation

* Theory evaluation Theory validation
e Action research e Controlled experiments
e Case study research * Hypothesis testing surveys

Theory Presentation & Handbook Method 12
© 2021 Dirk Riehle - Some Rights Reserved

Example Research Design for Microservices Integration Theory

1. Theory creation
* Qualitative survey (- theory)

2. Theory evaluation and revision
* Action research (- revised theory)

3. Theory evaluation
* Multiple-case case study research

Theory Presentation & Handbook Method 1 3
© 2021 Dirk Riehle - Some Rights Reserved

companies. Figure 1 shows problems with organizational struc-
ture, and Figure 2 shows how these problems affect the domain
engineering process. Both figures share some of the same
causes; they have been split up for readability purposes.

‘The key result is the following:

A root cause, the separation of product units as profit cen-
ters from a platform organization as a cost center, leads to
delayed deliveries, increased defect rate, and redundant
software components.

In our case studies, the business unit owns all products and the
platform, a product unit develops a particular product, and a
platform organization supports the product units in their work
by providing shared reusable assets. The business units in our
case studies are all structured into product units as profit centers
and the platform organization as a cost center.

As Figure 1 shows, the problems encountered with the orga-
nizational structure are traced back to the “separation of product
units as profit centers and platform organization as cost center”,

One More Thi

* “insufficient developer networking” where developers do
not find the time to talk to each other across the organiza-

tional unit boundaries.

In addition, the separation starves the platform organization for

resources. This leads to

* “lack of resources at platform organization”, because profit
centers responsible for their own revenue are always in a

stronger position to hire developers than any cost center.

Figures 1 and 2 do not show every cause and effect relationship,
and discussing all interactions is beyond a reasonable length for
this article. In the following subsections, we therefore focus on

the following three central cause-and-effect chains:

1. Lack of resources at platform organization — Delayed do-

main artifact realization — Delayed product delivery

2. Power play between product units — Poorly prioi

ized do-

main requirements — Rework and wasted effort — De-

layed product delivery

Availability of inner
source program

Personal
innovativeness

Adoption of

Lo inner source

‘which makes them “silos” in the language of our interview part-
ners, that is, organizational units that do not collaborate suffi-
ciently. Specifically, the “separation of product units as profit
centers” leads to

3. Insufficient intra-organizational-unit collaboration ~ Lim-
ited understanding of other organizational units ~ Unclear
reusable assets requirements — Insufficient reusable asset
quality Increased defect rate

Availability of
reusable components

* “lack of global business unit perspective” where each We chose these chains for presentation because they received
product unit acts in their own interests irrespective of pos- the most mentions and interest in our interviews. H 5
sible synergies from collaboration, 3
. i o 1" whete oher 21 Chain 1i Lack of resources
e ats e e iers tther In all three cases, the platform organization had a ignificantly
product ubits are viewed as threats o compeitors rather pigher workload than any of the product unts, despite the more
an possible collaborators, direct pressure on the product unit to deliver a product.

Education on
inner source

Participation in
o “power play between product units” where managers in open source
some or all of the product units are fighting to enforce their
interests irrespective of other product unit needs,

“All this work overload leads to lower code quality. I just
finish up as quickly as I can and then move on.” Developer
(platform), case 1.

Problems from and with 5.2.2 Hypotheses and Predictions

Organizational Structure Lack of global business Our case study companies have been continuing their efforts. However, it is too early to tell whether our recommendations have
unit perspective been beneficial to them.
HEEE The theories we present are only as good as the hypotheses that they generate and that can be validated in future work. Such
confirmatory research will also allow for generalized conclusions that are not possible from pure case study research.
:)’fo‘:'u‘g“eu': n‘s"E‘ between L"“"eda;‘gf'f;f‘am"‘g o HI Resi e and misunderstandings (like expected lower code quality of inner source components) can be addressed success-
organizational units fully by way of education and active participation in the practice of inner source software development.
“lizs 123) -) ; —— R
This hypothesis is likely to evaluate to true, given the change in public opinion on the use of and participation in open source soft -
Y ware projects from a negative to a positive stance.
of product Power play between Insufficient intra- Insufficient
units as profit centers product units [~ organizational-unit > ﬂa:*da'diza“g" on tools, H2 Psychological openness or resistance to inner source (i.e. desire or fear to work under quasi-public scrutiny) depends on man -
methods, and processes ager and developer personalities and is not a function of organizational structure or process.
1,23 1,23 1,2,3 1,23
A
Insufficient develo . , o 4 " . . -
el per Thus, we suggest that open source and inner source competencies are structurally similar, if not isomorphic. This is not surprising
given that inner source has originally been motivated by open source. This hypothesized relationship then leads to our most potent
1,2 hypothesi:
H5 While there is no doubt about the need of platform software and shared reusable assets, a platform development organization
Lack of resources at Lack of ime to act may not be needed any longer. It can be replaced by an inner source program.
platform i —> beyond immediate needs
o3 12 This is an interesting though probably controversial hypothesis: If large companies can work together in an open source foundation
- . to develop shared infrastructure components, why can’t product units within an organization work together to create a platform of

shared reusable assets without the need for a dedicated organizational unit that maintains this platform?

Supporting

The Handbook Method

1. Theory creation (and later revision)
 Creates theory using appropriate qualitative research methods, e.g. qualitative surveys

2. Theory presentation
 Presents theory in the form of “best practice” patterns handbooks

3. Theory evaluation
 Evaluates the theory using qualitative and quantitative research methods, e.g. case study research

4. Theory validation
» Validates hypotheses (e.g. patterns) using hypothesis-testing methods, e.g. controlled experiments

Theory Presentation & Handbook Method 16
© 2021 Dirk Riehle - Some Rights Reserved

Pattern Handbooks

 Handbook
* “Aconcise reference book covering a particular subject” (MW)

e (Current) best practice

 “Aprocedure that has been shown by research and experience to produce optimal results and that
is established or proposed as a standard suitable for widespread adoption” (MW)

e Pattern

e “Each pattern describes a problem that occurs over and over [...], and then describes [...] the solution to
that problem, in such a way that you can use this solution a million times over [...]" (Alexander, 1977)

* “Something designed or used as a model for making things” (MW)

Theory Presentation & Handbook Method 17
© 2021 Dirk Riehle - Some Rights Reserved

Pattern Handbook Structure

1 Introduction Introduction to the handbook and overall scope

2 Roles and responsibilities Overview of relevant roles and responsibilities

3 Domain overview Overview of all relevant domains covered by handbook
4.n Domain For each domain, a detailed discussion
n+l Conclusions (Optional) final words

Theory Presentation & Handbook Method 1 8
© 2021 Dirk Riehle - Some Rights Reserved

Example Domain Breakdown and Patterns

Manage suppliers

Require governance certification

Require governance maturity

Require fulfillment of component requirements

Supplier Contracts ©f

~[Supplier Management }9

Require bill-of-materials

Require use of bill-of-materials standard

Enable surprise audits

Integrate use-approval into delivery review [€]

Audit suppliers [€]

Theory Presentation & Handbook Method 19
© 2021 Dirk Riehle - Some Rights Reserved

Example Workflow and Patterns [1]

SUCHMA-SCMPRO-1.
Designate a role of
responsibility for supply
chain management, in
multiple places in

SUCHMA-SCMPRO-3.
Communicate supply
chain management

company process
\J
SUCH!VIA-SCMPOL-_1 . SUCHMA-SCM PRO-.2. SUCHMA-SCMPRO-{L SUCHMA-PREGOV.
Establish supply chain Establish supply chain Implement supply chain .
. Preventive Governance
management policy management process management process

3\

SUCHMA-SCMPRO-5.
Use tools to automate
supplier management

SUCHMA-CORGOV.
Corrective Governance

[1] Examples taken from Harutyunyan, N. (2019). Corporate open source governance of software supply 20
chains. Dissertation, Dept. Informatik, Universitat Erlangen.

https://cris.fau.de/converis/portal/Publication/227634932
https://cris.fau.de/converis/portal/Publication/227634932

Pattern Format

1 Name A short name for the best practice

2 Main actor(s) Roles of people involved in the best practice

3 Context The (abstract) context of applicability of the best practice
4 Problem The (abstract) problem solved by the best practice

5 Solution The actual best practice and how it solves the problem

6 Maturity An indicator of maturity (proposed, evaluated, validated)

Theory Presentation & Handbook Method 2 1
© 2021 Dirk Riehle - Some Rights Reserved

Example Pattern to “Manage Suppliers”

Name

Manage suppliers

Actor(s)

Engineering manager

Context

Your product includes not only open source components, but also third-party components that are
supplied to you by other software vendors. In contrast to open source projects, you are paying for
the component (license) and you are receiving it from a corporate entity.

You previously — defined (your) component requirements and they must be met by any compo-
nent, open source or not.

Problem

How to ensure that a third-party component delivery meets your requirements?

Solution

First, before you select a supplier, you may — require governance certification or at least — re-
quire (a minimum) governance maturity of them.

Once you have decided for a supplier, in any delivery contract, you should — require fulfilment of
your component requirements and you should — require a bill-of-materials upon delivery for which
you — require they use a bill-of-materials standard.

Upon delivery, you have to — ensure requirements are met and for this, you have to — integrate
use-approval into the delivery process.

If the supplier isn't certified and having to reject a component delivery is too expensive, you may
want to - enable surprise audits and consequently also — perform surprise audits as to best gov-
erance practices.

Maturity

Proposed

22

Scientific Community vs. Patterns Community

1 Theory creation / revision Pattern mining / discovery

2 Hypothesis (Proposed) pattern

3 Theory presentation Pattern languages, handbooks, systems, ...
4 Theory evaluation Heuristics, use of patterns

5 Theory validation Heuristics, use of patterns

Theory Presentation & Handbook Method 2 3
© 2021 Dirk Riehle - Some Rights Reserved

Example Research Design for the Handbook Method

Theory building Theory presentation Theory validation

Qualitative
1 survey < ‘

\J
Action Pattern
2 research < > handbook < >-
A

Case study ‘
3 research <

Theory Presentation & Handbook Method 2 4
© 2021 Dirk Riehle - Some Rights Reserved

Collaboration with Industry

* Theory building
* Expertinterviews (qualitative surveys)
 Researcher-guided application (action research)
* Researcher-observing use (case study research)

* Theory validation
» Pattern handbook testing

Theory Presentation & Handbook Method 2 5
© 2021 Dirk Riehle - Some Rights Reserved

What About my Publications?

Publishing Patterns

» Patterns are not science...
* Unless they have been derived using scientific methods

* Every single pattern is a hypothesis...
e Waiting to be tested

Theory Presentation & Handbook Method 2 7
© 2021 Dirk Riehle - Some Rights Reserved

Slicing Research Work

@ Theory building | Theory validation @

a Theory building and hypothesis validation 1

e Theory building and hypothesis validation 2

[1] See https://dirkriehle.com/2018/06/28/how-to-slice-your-research-work-for-publication/ 28

https://dirkriehle.com/2018/06/28/how-to-slice-your-research-work-for-publication/

More on the Handbook Method

* Riehle, D., Harutyunyan, N., & Barcomb, A. (2020). Pattern Discovery and Validation Using
Scientific Research Methods. Friedrich-Alexander-Universitat Erlangen-Nurnberg, Dept. of
Computer Science, Technical Reports, CS-2020-01, February 2020.

Theory Presentation & Handbook Method 2 9
© 2021 Dirk Riehle - Some Rights Reserved

https://dirkriehle.com/2020/03/05/pattern-discovery-and-validation-using-scientific-research-methods-technical-report/
https://dirkriehle.com/2020/03/05/pattern-discovery-and-validation-using-scientific-research-methods-technical-report/

Thank you! Questions?

dirk.riehle@fau.de - https://loss.cs.fau.de
dirk@riehle.org — https://dirkrienle.com — @dirkriehle

DR

mailto:dirk.riehle@fau.de
https://oss.cs.fau.de/
mailto:dirk@riehle.org
https://dirkriehle.com/
http://twitter.com/dirkriehle

Credits and License

* Oiriginal version

e © 2021 Dirk Riehle, some rights reserved
e Licensed under Creative Commons Attribution 4.0 International License

e Contributions
* None yet

Theory Presentation & Handbook Method 3 1
© 2021 Dirk Riehle - Some Rights Reserved

http://creativecommons.org/licenses/by/4.0/

Professorship of Open Source Software

* Professor of Computer Science

* For software engineering and open source software
« At the computer science department of the engineering faculty

* Previously held research positions at ...

 SAP Labs (Silicon Valley) leading the open source research group
 UBS (Swiss Bank, Zurich) leading the software engineering group

* Previously worked in development at ...

* Skyva Inc. (supply chain software, Boston) as software architect
« Bayave GmbH (on-demand business software, Berlin) as CTO

_— —
_— —1
I =]
- = _—
B == == = FRIEDRICH-ALEXANDER
= = UNIVERSITAT _
& ‘="==ERLANGEN-NURNBERG

Theory Presentation & Handbook Method 3 2
© 2021 Dirk Riehle - Some Rights Reserved

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

